深夜福利✅_国产亚洲超碰精品在线-艺文笔记

王金豹 2026年01月22日 01:21:37
发布于:曼谷

深夜福利✅_国产亚洲超碰精品在线_.手.动.输.入.网.址.联.系.客.服.人.员.lanan_shell

Flight Segment Identification as a Basis for Pilot Advisory Systems

Dr. Wallace E. Kelly III* Blue Rock Research and Development, Inc., Asheboro, North Carolina, 27502 Dr. John H. Painter. Altair Corporation, College Station, Texas,  Flight Segment Identification (FSI) is the process of monitoring aircraft state variables and flight events to identify in real-time the phase of flight or operational procedure of an aircraft. It is a dynamic classification problem in which the state space is highly dimensional and the boundaries between the various flight phases are not crisply defined. Examples of flight segments include “enroute cruise,” “holding,” and “initial approach.” We explain the role of Flight Segment Identification (FSI) in building pilot advisory systems, including a new distinction that we propose between state-based FSI and procedural FSI. State-based FSI uses the aircraft state variables to infer the flight operation currently being executed by the pilot. Procedural FSI tracks the flight operation that the pilot should be executing now – based on events and flight rules that are largely outside the control of the pilot. We present one approach to performing Flight Segment Identification based on fuzzy sets and how we applied this solution to the NASA High Volume Operations concept. Finally, we discuss our results and conclusions from recent flight tests of a Flight Segment Identifier. Nomenclature mA(x) = the fuzzy degree of membership of data x in fuzzy set A. li = a prototype point, to define a hypertrapezoidal fuzzy set i. s = the crispness factor of a hypertrapezoidal partitioning. d(x, y) = the Euclidean distance between data points x and y. ri|j(x) = an intermediate distance value used for calculating hypertrapezoidal fuzzy membership.

I. Introduction vionics software with artificial intelligence could assist pilots in following flight procedures. There are several Amotivations for doing this. The first is that the amount of available information in future cockpits will continue to grow and the complexity of the avionics to manage that information will likewise increase. AI technologies can help monitor and prioritize the information flow in the cockpit. Secondly, “smarter” software in the cockpit would simplify the task of flight for newer and less experienced pilots. NASA and other industry leaders foresee a new class of “personal air vehicles,” which brings aviation to more people. Making those vehicles easier to operate is an important research goal for the industry. The goal was recently described by NASA as “simplify the operation of small aircraft such that the specialized skills, knowledge, and associated training are reduced to levels comparable to operating an automobile or boat.”1 Another motivation, which is the primary focus of this paper, is that avionics with Pilot Advisor functionality can enable new flight procedures that make our National Airspace System operate more efficiently. It is worth clarifying what is meant by “avionics software with artificial intelligence.” The goal is to engineer onboard computer systems that assist the pilot much like an instructor pilot might monitor and advise a student pilot. * President, Blue Rock Research, 4998 Old NC-49, Asheboro, NC, 27205-0117, Member, AIAA. . President, Altair Corporation, P.O. Box 10046, College Station, TX, 77842-0046, Member, AIAA. Completely replicating that kind of expertise would be quite a challenge. The industry is no where near that level of capability. But we are making progress. Besides the in-flight benefits, there is also the potential for a training aid during simulation. A “verbose mode” of a Pilot Advisor can be used to pause a flight simulator when a student makes a significant mistake. Either a printed commentary may be projected on the display or synthetic voice may give the required training commentary. After digesting the commentary, the student may then un-pause the simulator and proceed with the flight. This training mode in a Pilot Advisor would be extremely useful in teaching such procedures as Instrument Approaches (ILS, GPS, etc.)   www.aero.cn 航空翻译 www.aviation.cn 本文链接地址:Flight Segment Identification as a Basis for Pilot Advisory

原标题:
78 个人收藏 收藏

评论交流

这位访客请「登录」后参与评论

相关推荐

  • 游戏行业的暴利成了笑话

      同日,苏丹快速支援部队在社交媒体上发布的一段视频显示,其部队正在恩图曼以西作战。
  • 哈勃望远镜捕捉到遥远宇宙漂流的“对虾星云”

      此前,特斯拉CEO马斯克预计,两年内年将由“缺硅”变为“缺电”,而这可能阻碍AI的发展。马斯克多次强调解决日益增长的电力需求的紧迫性。
  • 任泽平:为什么我们对今年楼市不悲观

      孙立鹏表示,美国出台的一系列歧视性法案和政策,违反了世贸组织框架下补贴与反补贴规则,同时是对国际贸易规则中的“国家安全例外”条款的滥用。该举措破坏了国际经贸秩序和市场规则,扰乱了全球产业链发展和经济全球化进程。
  • 十年梦碎,苹果汽车项目走向终结

      养老社区为长者带来的不仅是生活中的照顾,更是心灵的陪伴。俞维美对此深有体会:“我之前一个人住在部队干休所,但找保姆什么挺麻烦的,找了保姆以后,他们过年过节都回家,我一个人也挺寂寞的。”而住在养老社区中,长者与工作人员都如家人般陪伴相处,“管家把我们老人当亲人一样。”
  • 黑色、有色第二轮下跌行情即将启动

      金科地产集团股份有限公司(以下称“公司”)于2024年3月7日以专人递送、电子邮件等方式发出关于召开公司第十一届董事会第四十五次会议的通知,会议于2024年3月11日以通讯表决方式召开。本次会议由公司董事长周达先生召集并主持,应到董事7人,实到董事7人。本次会议的召集、召开和表决程序符合有关法律、法规和《公司章程》的规定,会议形成的决议合法有效。本次董事会会议通过如下议案:
  • 习近平签署国家主席令

      除了在基础研究上有重大意义外,此项成果也为解决我国人口健康领域的重大挑战做出贡献。据介绍,利用体细胞克隆技术制作脑疾病模型猴,为人类面临的重大脑疾病的机理研究、干预、诊治带来前所未有的光明前景。
  • 汪涛:金融工作会议的重心可能是什么

      (小风)声明:新浪网独家稿件,未经授权禁止转载!
  • 欧美纷纷“倒戈”,电动车市场真的不香了?

      当一个人想要远离你,你的碰触,他会嫌弃。
  • 谢桥煤矿爆燃致7死2失联,关联上市公司淮河能源这样回应

      福慧护生园临湖基地,濒临太湖,农业的面源污染是太湖水源保护的主要威胁之一。在护生园的一方小天地中,我们改变模式,尝试用生态农耕的方式,去改善生养我们的土地。保护水源,保护生态,留给后代一片好山水,留给其他生命一个赖以生存的家园。
  • 史上最大的陆生哺乳动物有多大?

      2月26日,高端聚烯烃材料研发商中科科乐完成数亿元Pre-A轮融资,由锦沙资本、襄禾资本联合领投,航源基金、科大硅谷、阳光仁发投资、东方嘉富、架桥资本、基石资本、英飞尼迪资本、开投瀚润资本、清新资本、讯飞创投等机构跟投,老股东合肥高投、合肥创新投资持续加码。
  • 刘涛绿洲晒自拍照状态佳 清新薄荷绿皮衣飒气十足

      对于大模型产品来说,最重要的仍旧是通过技术解决用户需求的能力,自ChatGPT横空出世以来,无数人都认为大模型产品将改变整个互联网的生产逻辑,但未来的进程似乎要远慢于我们的期望。
  • 哺乳期女教师被学校调岗为保洁工,拒绝后遭解聘,法院:学校违法解约

      在数字化体验上,擅长玩乐的MINI推出了8种不同的选择,包括初始模式(Core)、卡丁模式(Go-Kart)、节能模式(Green)、放轻松模式(Balance)、怀旧模式(Timeless)、自定义模式(Personal)、派对模式(Vivid)以及游牧模式(Trail),每种模式都有自己特定的用户界面设计。MINI品牌的首个“智能个人助理”——MINI数字化萌宠Spike也现身车内。这只迷你的数字萌宠,在数字世界中被重新塑造并赋予新生,并在MINI全新家族车型中的圆形OLED中央显示屏和仪表板上。
  • 华联期货:临近交割 日历交易

      上图为百强装企走访展厅实录
  • SU7定档官宣, 小米集团股价起飞!造车新势力的春天来了

      周六,李想在朋友圈说到,“无论多么难,都不能成为【达斯·维达】”。