糖心logo官网✅_青青操国产-艺文笔记

王金豹 2026年01月04日 23:40:23
发布于:曼谷

糖心logo官网✅_青青操国产_.手.动.输.入.网.址.联.系.客.服.人.员.lanan_shell

Aviation Research Lab Institute of Aviation University of Illinois at Urbana-Champaign 1 Airport Road Savoy, Illinois 61874 Human Error and Accident Causation Theories, Frameworks and Analytical Techniques: An Annotated Bibliography Douglas A. Wiegmann and Aaron M. Rich Aviation Research Lab and Scott A. Shappell Civil Aeromedical Institute Technical Report ARL-00-12/FAA-00-7 September 2000 Prepared for Federal Aviation Administration Oklahoma City, OK Contract DTFA 99-G-006 ARL 1 ABSTRACT Over the last several decades, humans have played a progressively more important causal role in aviation accidents as aircraft have become more. Consequently, a growing number of aviation organizations are tasking their safety personnel with developing safety programs to address the highly complex and often nebulous issue of human error. However, there is generally no “off-the-shelf” or standard approach for addressing human error in aviation. Indeed, recent years have seen a proliferation of human error frameworks and accident investigation schemes to the point where there now appears to be as many human error models as there are people interested in the topic. The purpose of the present document is to summarize research and technical articles that either directly present a specific human error or accident analysis system, or use error frameworks in analyzing human performance data within a specific context or task. The hope is that this review of the literature will provide practitioners with a starting point for identifying error analysis and accident investigation schemes that will best suit their individual or organizational needs. 2 Adams, E. E. (1976, October). Accident causation and the management system. Professional Safety, 26-29. The paper explores accident causation in the context of management philosophy and support for the safety professional. An underlying theme is that management’s thoughts and actions influence work conditions and worker behavior. Accident prevention is then discussed as a two level task. The first level consists of technical problem solving for correcting tactical errors. The second level consists of management analysis and strategic planning for the correction of operational errors. Heinrich’s domino philosophy of accident prevention is also analyzed in regards to its relevance to management behavior. Air Force Safety Center: Life Sciences Report (LSR) and USAF HF Taxonomy. (1998). (NASA Aviation Data Sources Resource Handbook). The Life Sciences Report and USAF human factors taxonomy are described. The human factors category of the Life Science Report Investigations was designed to allow for a broader secondary analysis of human factors issues. The data is limited to aircraft accidents only. The report relies on the use of a logic tree. The human factors category is broken down into two main categories with multiple subcategories within each. The first is the environmental category that incorporates operations, institutions and management, logistics and maintenance, facilities services, and egress/survival. The second is the individual category that is comprised of physiological/biodynamic, psychological, and psychosocial subcategories. AIRS Aircrew Incident Reporting System. (1998). (NASA Aviation Data Sources Resource Notebook). The AIRS is a reporting system developed by Airbus Industrie to assess how their aircraft are operated in the real world, to gather human factor information, learn what role human factors play in accidents, and inform other operators of the lessons learned from these events. A taxonomy was designed for the database that is based on five categories of factors. The first category is crew actions. There are three main components of this category. (1) Activities of handling the aircraft and its systems (2) Error types (based on Reason’s model of human error) (3) Crew resource management teamskills The other categories include personal influences (emotion, stress, motivation, etc), environmental influences (ATC services, technical failure, other aircraft, etc.), organizational influences (training, commercial pressure, etc.), and informational influences (checklists, navigational charts, etc.). A keyword system to access the database has also been designed. This keyword system is separated into two categories, crew behavior and contributory factors. An advantage of the AIRS as a reporting system is that it allows for plots of error chains which represent active and latent failures instrumental to an incident occurrence. It also supports trend analysis.   www.aero.cn 航空翻译 www.aviation.cn 本文链接地址:人为因素分析综述

原标题:
77 个人收藏 收藏

评论交流

这位访客请「登录」后参与评论

相关推荐